
Deterministic Execution
02/27 Ni Kang, Taihai He



DMP: deterministic shared memory multiprocessing

- Summary
- DMP Key Mechanisms

- DMP-Serial
- Deterministic Token and Quantum

- DMP-ShTab
- DMP-TM/DMP-TMFwd
- Quantum Builders

- Hardware/Sofeware Implementaions
- Evaluations
- Discussions



Background

- Nondeterminism
- Same inputs can lead to different outputs
- Too many possible ways of instruction interleaving

- “Defective software might execute correctly hundreds of times before a subtle 
synchronization bug appears, and when it does, developers typically cannot 
reproduce it during debugging.“

- Need to use logs to record every execution 
- Still hard to replay



Summary

- Determinism
- Key: deterministic inter-thread communication 

- Maintain a fixed order of load/store operations on shared data
- Rest of the instructions can still have different orders in exectuions

- “Communication-equivalent interleavings”

- Use deterministic execution to improve reliability
- Easier to test and debug

- Avoid subtle multithread bugs
- Always able to reproduce previous execution results

- Acceptable performance loss
- Multiple co-existable mechanisms for different applications
- Complexity-performance trade-offs between hardware and software 

implementations



Nondeterminism Quantification

● Exist regions where nondeterminism drops to nearly zero.
● Executions may never reach 100% nondeterminism.



DMP-Serial

- DMP-Serial
- Fully serialized accesses to data
- Allow only one preocessor at a time to access memeory in a deterministic order



Deterministic Token and Quantum

- Deterministic token
- Processor with the token can access memory. Otherwise, wait for it.
- One token passing around. Multiple tokens are also allowed with hardware 

implementation if there are multiple deterministic processes at the same time

- Quantum
- Instruction segments invloving shared data load/store that require token
- QB-Count: count instructions and break when a deterministic, target number is reached
- Other smarter ways to divide quantum, will introduce later

- Parallelism?
- Serilization hurts performance a lot



DMP-ShTab

- Not all load/store operations have conflicts
- Communication is the key
- Quantum = communication-free prefix + serial suffix
- Only requires suffixies to be deterministic

- Sharing table for memory locations
- Data is either private or shared for a processor
- Supports different granularities

- Features
- Token is only required for accessing shared data 
- If one thread wants to write data, it needs to wait for 

all other threads to be blocked even if it has already 
acquired the token. (Broadcast)

- Block: finish execution of quantum or prefix



DMP-TM / DMP-TMFwd

- Transactional Memory Support
- Allowing more concurrent executions with speculations and re-executions

- DMP-TM
- Speculation + Commit + Squash
- Correctness: no overlapping memory accesses
- May squash and re-execute quantum when deterministic serialization is violated

- DMP-TMFwd
- DMP-TM + Forward
- Quantum can fetch uncommitted data from other quantum
- Avoid some squashes, but all subsequent quantum need to be squashed if previous 

speculations generated incorrect data



Quantum Builders

- A fixed number of instructions may not reflect the progress of a thread on 
its critical path of execution

- QB-SyncFollow
- Ends a quantum when an unlock operation is performed
- Other threads may be waiting for the lock right now

- QB-Sharing
- Ends a quantum when a thread hasn’t issued memory operations to shared locations in 

some time, like after a number of instructions
- Other threads don’t need to keep waiting if current thread has already finished all of its 

memory-sensitive operations

- QB-SyncSharing
- QB-SyncFollow OR QB-Sharing, whenever either of their requirements are satisfied



Hardware / Software Implementation

- Hardware: more complex, better performance (less performance drop)
- Quantum Building: may need supports from compilers
- DMP-ShTab

- Uses MESI cache coherence protocol to represent private / shared status
- State changing requirements: no speculation, must have token, all threads blocked
- Similar to directory-based cache coherence

- DMP-TM / DMP-TMFwd
- Allowing commit only when token is held
- Data versioning
- Similar to Thread-Level Speculation (TLS)

- Software: simple, helpful at debugging-level
- Use compiler or binary writer
- Build quantum with CFG
- Token = lock



Evaluation: mechanisms 



Evaluation: quantum size



Evaluation: granularity



Evaluation: quantum builders



Evaluation



Evaluation: 
software implmentation



Discussions

● A system can have DMP-TM(Fwd) / DMP-ShTab / DMP-Serial at the same 
time and switch to each other for different tasks

● Hardware and software implmentations can be used together to have 
fliexiblity

● Supports deployment with modification and standardization



Grace: Safe Multithreaded Programming for C/C++



Motivation
● Concurrency bugs



Motivation
● Transactional memory system is not working here
- Compatibility with C/C++ and commodity hardware
- Support for long-lived transactions
- Isolation of updates from other threads
- Support for irrevocable actions (i.e. I/O)
- Low runtime and space overhead



Introduction
● Treating threads as processes
- Use memory mapped files to share the heap and globals across processes
- Version numbers



Introduction
● Globals
● Heap Organization
- Fixed size heap
- Sub-heap



Execution -- Initialization



Execution



Execution -- Committing
● Locks are needed （mapping files)
● If version numbers for every page in the read set match the committed 

versions → Commit
● Else → Rollback



Sequential Commit
● Post-order traversal



Evaluation -- Concurrency Errors
● Deadlocks



Evaluation -- Concurrency Errors
● Race conditions



Evaluation -- Concurrency Errors
● Atomicity violations



Evaluation -- Concurrency Errors
● Order violations



Evaluation -- Real Applications



Evaluation -- Real application
● Thread-creation hoisting / argument padding
● Page-size base case
● Changed concurrency structure



Evaluation -- Real application



Evaluation -- Application Characteristics
● Grain size



Evaluation -- Application Characteristics
● Footprint



Evaluation -- Application Characteristics
● Conflict rate



Thank you!


